API Overview
Modules
- api
- api.hypergraph
- api.scripts.wait_process: wait for a process to finish.
- api.transforms
- api.transforms.image
- api.transforms.image.io
- api.transforms.image.photometric
- api.transforms.image.spatial
- api.transforms.random
- api.transforms.semseg
- api.utils
- core.dataset
- core.graph: contains- Nodeand- ExecutableGraph.
- core.hypergraph
- core.loss
- core.metric
- core.module
- core.optim
- llutil
- llutil.argparser: parse arguments for functions and command line.
- llutil.board
- llutil.collections
- llutil.config
- llutil.debug
- llutil.dictprocess
- llutil.file_client
- llutil.ignore_me
- llutil.launcher
- llutil.launcher.elastic_multiprocessing
- llutil.launcher.events
- llutil.launcher.launch_agent
- llutil.launcher.launcher
- llutil.launcher.local_elastic_agent
- llutil.logger: logging utilities.
- llutil.multiprocessing: a drop-in replacement for- torch.multiprocessing.
- llutil.print
- llutil.pycuda: Integrates PyCUDA to PyTorch and ice.
- llutil.shadow_tb
- llutil.test: helps developers of ice to test.
- llutil.utils
Classes
- dataset.DatasetNode: Automating DataLoader and DataSampler creation and maintainance.
- dataset.ResumableDistributedSampler
- graph.ExecutableGraph: an executable graph.
- graph.GraphOutputCache: a cache for storing and searching forward outputs of nodes.
- graph.InvalidURIError: An Exception raised when valid node URI is expected.
- graph.Node: This class defines the executable node.
- graph.StopAllTasks: An Exception raised to exit current running.
- graph.StopTask: An Exception raised to exit current task.
- hypergraph.Counter: Counter object.
- hypergraph.GlobalCounters: Global counters object.
- hypergraph.HyperGraph: HyperGraph is the container for all nodes.
- hypergraph.Repeat: Repeat a task for a fixed number of times.
- hypergraph.ResumeTaskFailed: raised when task structure does not match during resuming.
- hypergraph.Task: A task is a unit of computation.
- loss.LossMode: An enumeration.
- loss.LossNode
- metric.AverageMeter
- metric.DictMetric
- metric.Meter: value reducer that works recursively.
- metric.MetricNode
- metric.MovingAverageMeter
- metric.SummationMeter
- metric.ValueMeter
- module.ModuleNode: a node that extends- torch.nn.Module
- optim.Optimizer: Optimizer configuration API for ice-learn.
- argparser.ArgumentMissingError: Raised when a required argument is missing from command line.
- argparser.ArgumentTypeError: Raised when converting an argument failed.
- argparser.FlexibleArgParser: A flexible and lightweight argument parser that saves loads of code.
- board.BoardWriter
- collections.ConfigDict: stores multi-level configurations easily.
- collections.Counter: count values by group.
- collections.Dict: access dict values as attributes.
- config.Configurable
- debug.SubProcessPdb: Pdb that works from a multiprocessing child
- file_client.BaseStorageBackend: Abstract class of storage backends.
- file_client.CephBackend: Ceph storage backend (for internal use).
- file_client.FileClient: A general file client to access files in different backends.
- file_client.HTTPBackend: HTTP and HTTPS storage bachend.
- file_client.HardDiskBackend: Raw hard disks storage backend.
- file_client.LmdbBackend: Lmdb storage backend.
- file_client.MemcachedBackend: Memcached storage backend.
- file_client.PetrelBackend: Petrel storage backend (for internal use).
- ignore_me.IgnoreMe
- elastic_multiprocessing.MultiprocessContext:- PContextholding worker processes invoked as a function.
- elastic_multiprocessing.PContext: The base class that standardizes operations over a set of processes
- elastic_multiprocessing.TailLog: Tails the given log files. The log files do not have to exist when the
- events.Events: Communicate among main process (agent) and subprocesses (workers).
- launch_agent.LaunchConfig: Creates a rendezvous config.
- launcher.ElasticLauncher: A helper- Configurableclass for- torchrunand- torch.distributed.launch.
- local_elastic_agent.LocalElasticAgent: An implementation of :py:class:- torchelastic.agent.server.ElasticAgent
- pycuda.CUDAModule: Just-In-Time compilation of a set of CUDA kernel functions and device functions from source.
Functions
- api.DatasetNode
- hypergraph.LoadCheckpointTask
- hypergraph.SaveCheckpointTask
- hypergraph.add
- hypergraph.backup_source_files
- hypergraph.get_default_graph
- hypergraph.init_autocast
- hypergraph.init_grad_scaler
- hypergraph.print_forward_output
- hypergraph.run
- hypergraph.set_gradient_accumulate
- io.Load: Args:
- io.imfrombytes: Read an image from bytes.
- io.imread: Read an image.
- io.imwrite: Write image to file.
- io.use_backend: Select a backend for image decoding.
- photometric.Normalize: Normalize the image and convert BGR2RGB.
- photometric.PhotoMetricDistortion: Apply photometric distortion to image sequentially, every dictprocessation
- photometric.ToTensor: Args:
- spatial.Crop: crop a region of interest from the- srcarray.
- spatial.Flip: flip the- srcimage.
- spatial.Pad: Padding a image to target size.
- spatial.Resize: Args:
- spatial.SizeDivisorMultiple: Returns a smallest but larger shape to ensure each edge to be multiple to some number.
- random.RandomChoice
- random.RandomDo
- random.RandomFloats
- random.RandomImage: generate a random image for testing purpose
- random.RandomIntegers
- random.RandomProbabilities
- random.RandomROI: generate random region of interest.
- semseg.LabelToTensor: Convert to tensor (as int64).
- semseg.LoadAnnotation: Load annotations for semantic segmentation.
- semseg.RandomCrop: Crop a pair of images and segmentation labels such that the class is relatively balanced for training.
- utils.parse_devices
- dataset.failsafe_collate: Puts each data field into a tensor with outer dimension batch size
- hypergraph.GlobalCounters.__init__
- hypergraph.LoadCheckpointTask: Load checkpoint from a file.
- hypergraph.SaveCheckpointTask: Save checkpoint to a file.
- argparser.as_dict: helps to regularize input into a dict.
- argparser.as_list: helps to regularize input into list of element.
- argparser.get_hostname
- argparser.is_list_of: Check whether it is a list of some type.
- argparser.is_seq_of: Check whether it is a sequence of some type.
- argparser.is_tuple_of: Check whether it is a tuple of some type.
- argparser.isa: an alias for python built-in- isinstance.
- argparser.parse_scalar
- config.clone: clone configurables, containers, and ordinary objects recursively.
- config.configurable: This decorator delays the initialization of- clsuntil- freeze().
- config.freeze: freeze configurables recursively.
- config.frozen
- config.has_builder
- config.is_configurable: check if a class or an object is configurable.
- config.make_configurable: This function converts multiple existing classes to configurables.
- config.objattr
- debug.set_trace
- dictprocess.Collect: a predefined DictProcessor that keep only selected entries.
- dictprocess.Compose: a predefined DictProcessor that composes a list of other DictProcessors together.
- dictprocess.dictprocess: a decorator that convert function into a DictProcessor (- Callable[[Dict], Dict]).
- file_client.has_method: Check whether the object has a method.
- file_client.mmcv_mkdir_or_exist
- elastic_multiprocessing.start_processes: Starts- ncopies of- entrypointprocesses with the provided options.
- elastic_multiprocessing.tail_logfile
- launch_agent.LaunchConfig.__init__
- launch_agent.launch_agent
- launcher.get_current_launcher
- logger.get_logger: set up a simple logger that writes into stderr.
- print.format_size: Format a byte count as a human readable file size.
- print.set_printoptions
- shadow_tb.shadow
- test.requires_n_gpus
- utils.auto_freeze_enabled
- utils.enable_auto_freeze
- utils.in_main_process: Whether current process is worker process or main process.
- utils.init_torch_multiprocessing